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Advanced methods such as REACT have allowed the integration of fMRI with the brain’s receptor
landscape, providing novel insights transcending the multiscale organisation of the brain. Similarly,
normative modelling has allowed translational neuroscience to move beyond group-average
differences and characterise deviations from health at an individual level. Here, we bring these
methods together for the first time. We used REACT to create functional networks enriched with the
main modulatory, inhibitory, and excitatory neurotransmitter systems and generated normative
models of these networks to capture functional connectivity deviations in patients with schizophrenia,
bipolar disorder (BPD), and ADHD. Substantial overlap was seen in symptomatology and deviations
from normality across groups, but these could be mapped into a common space linking constellations
of symptoms through to underlying neurobiology transdiagnostically. This work provides impetus for
developing novel biomarkers that characterise molecular- and systems-level dysfunction at the
individual level, facilitating the transition towards mechanistically targeted treatments.

Neuropsychiatric disorders present a formidable healthcare challenge for
which we remain largely bereft of meaningful treatments. Indeed, first-line
pharmacotherapies largely engage poorly understood pharmacological
mechanisms discovered serendipitously decades ago' and remain ineffec-
tual for many patients”™. The reasons for this ultimately reflect the extreme
difficulty of understanding how complex aberrations of cognition and affect
map onto underlying neurobiology. This in turn relates to the overarching
challenge of understanding the brain, which is best described as a complex
system whose diverse constituent components interact across spatial and
temporal scales to bring to bear the genetic and environmental interactions
which collectively shape our experience and behaviour.

Neuropsychiatric disorders layer additional heterogeneous patho-
physiology on top of this inherent neurobiological complexity, resulting in
significant variability in both neural mechanisms and symptomatology
which show similarities across, and differences within, diagnostic
boundaries®"". For this reason, many treatments are utilised trans-nosolo-
gically, with selective serotonin reuptake inhibitors (SSRIs) having FDA
approval for the treatment of at least 10 different psychiatric disorders'.

In short, the current diagnostic paradigm is undermined by symptoms and
treatments that are non-specific within and across disorders and that are
poorly mapped onto underlying neurobiology". Despite this, the majority of
research continues to largely employ a case-control-based paradigm, in
which group average differences are characterised between clinical cohorts
and matched healthy participants, inherently neglecting such heterogeneity.
Precision psychiatry, and precision medicine more broadly, aims to move
beyond large and poorly defined groups towards refined stratified or even
individualised treatment based on underlying pathophysiological
mechanisms'’, For example, the Research Domain Criteria (RDoC) fra-
mework aims to re-examine mental disorders from the perspective of
neurobehavioral functioning, regardless of conventional diagnostic
categories'”™". This is nicely exemplified by a null result for the primary
outcome measure of a clinical trial. Currently, this reflects the average
treatment response across all patients included in the study. However, the
substantial heterogeneity within diagnostic groups may mean that in fact,
some patients do derive meaningful benefit (so-called “responders”), whilst
others show no real improvement (so-called “non-responders”). Thus, the
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failure of the trial to demonstrate the clinical utility of a given treatment may
be due to the inherent limitations of the intervention studied, but could also
reflect an inability to effectively stratify and the need for mechanistic bio-
markers to enhance or supplant conventional diagnostic criteria within
clinical practice.

Neuroimaging offers a non-invasive set of methods which facilitates
the study of brain structure and function, providing insights into the neu-
robiology underpinning psychiatric disorders. However, within conven-
tional analytic frameworks, neuroimaging data is typically analysed for
differences between patients and controls as well as for relationships
between patients’ brain features and clinical measures. The latter offers
insights into how variability across patients’ brains relates to the severity of
symptomatology. However, the ability to utilise these relationships across
subjects to target treatment as well as transfer these relationships to apply
within additional patients from outside the original cohort remains limited.
A set of emerging methods have been developed to address this specific
issue. Normative modelling aims to robustly characterise what certain
aspects of brain structure or function “should” look like across the spectrum
of healthy ageing based on a set of predictor variables, typically demo-
graphics such as age and sex'**”. This has been analogised to “growth charts
for the brain” as it follows the same logic as assessing if a child’s body
measurement (e.g., height) shows typical growth given their age and sex,
providing a reference for what is typical considering the variability in growth
patterns™. Similarly in neuroimaging, once a model has been trained to
make predictions about a given brain feature (e.g., cortical thickness, brain
volume), it can be utilised to examine whether an individual with a given
diagnosis, or particular constellation of symptoms, falls within the expected
range or shows significant abnormalities as compared to the normal
population. Such abnormalities, or deviations, can be either positive or
negative based on whether they are greater or lower than the expected range,
respectively. To date, normative models of structural grey and/or white
matter measures have been explored in schizophrenia®”, bipolar
disorder™”, ~Alzheimer’s disease’”, ADHD*, autism spectrum
disorder””*, depression™, and obsessive-compulsive disorder”. A key
emerging theme of this work to date is that whilst patients tend to have more
extreme deviations than controls, the spatial distribution of these is extre-
mely heterogeneous, to the extent that group average patterns of neuro-
pathology are simply not representative of most individual patients.
However, the exclusive application of normative modelling to structural
imaging may have also constrained the potential insight that can be gained.
Recent work has shown that these heterogeneous structural deviations are
often embedded within shared functional networks™, emphasising the need
to utilise functional imaging measures.

So far no functional neuroimaging-based tool has been meaningfully
exploited in clinical practice. One key reason underlying this is that fMRI
offers only an indirect measure of neuronal function, remaining abstracted
from the cellular and molecular mechanisms that ultimately constitute brain
function, and crucially, upon which interventions act. We contend that this
may mean that deviations from health characterised using fMRI, as well as
the aforementioned structural measures, are not readily amenable to tar-
geted clinical intervention. However, a novel suite of analytic approaches
which incorporates micro-scale molecular information into the analysis of
macro-scale fMRI dynamics offer critical opportunities to bridge the gap
between these scales, providing new insights into brain function and dys-
function (see ref. 33 for extensive review). These approaches are well suited
to provide novel biomarkers that link neuropathology through to phar-
macotherapy in a mechanistic and data-driven manner”. For example,
Receptor-Enriched Analysis of functional Connectivity by Targets
(REACT) has proven useful in characterising the complex psycho-
pharmacological effects of various drugs™ . Furthermore, it is increasingly
being applied to clinical conditions, such as within a recent proof of concept
paper demonstrating its potential to stratify patients with osteoarthritis who
may respond preferentially to placebo or duloxetine”’. Crucially, REACT
can be used to derive molecular-enriched networks capturing the rela-
tionship between receptor density distribution and functional connectivity

(FC) patterns. Specifically, molecular-enriched FC provides an indication of
how each brain region, or voxel, interacts with brain areas where a certain
receptor is highly distributed, providing a framework for understanding
how specific neurotransmitter systems, identified by their receptor dis-
tributions, influence brain connectivity patterns. It provides a unique per-
spective on the functional architecture of the brain, suggesting how
neurotransmitter-specific networks could modulate functional con-
nectivity. However, it is important to note that since BOLD fMRI has no
intrinsic selectivity to any neurochemical target, it does not directly measure
neurotransmitter activity, nor does it imply changes in neurotransmitter
levels. Despite this, it can be deployed within a highly scalable manner to
large fMRI datasets, offering invaluable insights into the functional altera-
tions underpinned by underlying molecular mechanisms.

Both normative modelling and molecular-enriched analyses offer sub-
stantial promise to overcome two of the pre-eminent limitations in biomarker
development; namely, complexity in the form of heterogeneity and the
multiscale organisation of the brain. As such, their combination offers a
potential path forward for both mechanistic elucidation as well as to help
bring neuroimaging closer to clinical implementation. To this end, here we
utilised REACT to derive networks enriched within the main modulatory
(noradrenaline, dopamine, serotonin, and acetylcholine), excitatory
(glutamate), and inhibitory (GABA) neurotransmitter systems within two
datasets. We subsequently generated normative models of these molecular-
enriched networks across the healthy ageing spectrum. We then examined
clinical and functional similarity within and across patients suffering from
schizophrenia (SCHZ), bipolar disorder (BPD), and attention-deficit
hyperactivity disorder (ADHD). Finally, we used a transdiagnostic
deviation-symptom mapping approach to link the symptomatology across all
patient groups with their brain’s functional deviations from normality and
highlight the molecular circuits driving such abnormality. Altogether, this
offers significant progress towards generating novel biomarkers transcending
multiple organisational scales of the brain and conventional diagnostic
compartmentalisation, which in the longer term will offer a tantalising
opportunity to link targeted treatment through to specific domains of neu-
robehavioral dysfunction (Fig. 1).

Results

Demographics

Following quality control exclusions, imaging data of a total of 607 healthy
subjects (CamCAN: N =496, Mean age (SD) = 52.3 (18.3), M/F = 255/241;
UCLA: N =111, Mean age (SD) = 31.2 (8.7), M/F = 60/51) were included in
the analysis. From the UCLA dataset, a total of 119 patients was used in the
final analysis, including patients suffering from SCHZ (N = 38, Mean age
(SD) =35.1(8.8), M/F = 32/6), BPD (N = 44, Mean age (SD) = 34.6 (8.9), M/
F =24/22),and ADHD (N = 37, Mean age (SD) = 32.2 (10.1), M/F = 19/18).

Between-subject symptom similarity

To first explore the phenotypic data, we examined each of the 28 different
symptom scores within and across the different clinical groups. The dis-
tribution of scores for each of the groups overlapped for most symptoms,
with only a few such as BPRS positive symptoms showing clear divergence
across the conventional diagnostic groups (SI-Fig. 1). To quantify how
similar each patient’s constellation of symptoms was to every other patient
(Fig. 2), we compared within- and between-group similarity for each
diagnosis utilising non-parametric repeated measures ANOVAs and post-
hoc tests. These revealed significant higher-level results for SCHZ (¢ = 42.0,
p<0.001), BPD (3¢ =6.8, p =0.032), and ADHD (¥’ =37.2, p < 0.001) (for
descriptive statistics, see SI-table 1). Strong within-group similarity was seen
both for SCHZ and ADHD groups, with SCHZ patients showing sig-
nificantly greater within-group similarity than between-group similarity to
BPD (t=3.9, Ppons<0.001) and ADHD (t=6.4, pyo,s<0.001) groups.
Additionally, SCHZ-BPD similarity was significantly different than SCHZ-
ADHD (t = 2.52, pyons= 0.041), with SCHZ and ADHD patients showing
opposite patterns of symptoms (i.e., negative correlation values). ADHD
patients showed significantly greater within-group similarity than between-
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Fig. 1 | Analysis overview. a The data utilised is from two existing datas

CAN ageing and UCLA phenomics, the latter including healthy individuals as well as

data from three clinical cohorts (Schizophrenia - SCHZ, bipolar disorder -

ADHD). b 28 different symptom scores available transdiagnostically were used to
examine within- and between-group similarity in terms of symptomatology (I) as
well as derive composite symptom sub-domains using PCA (ii). ¢ REACT was used
to generate molecular-enriched functional networks (i) which were subsequently
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using ANOVAs (i); the averaged summary metrics were also examined for classi-
fication value using binary logistic regression (ii); within- and between-group FC
deviation similarity was also evaluated (iii). f Finally, deviation scores were analysed
transdiagnostically, examining how transdiagnostic similarity relates to the extent of
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Fig. 2 | Symptom similarity. a Between-subject similarity matrix for normalised
psychometric measures. Each position in the matrix represents the correlation
coefficient across all psychometric scores for a pair of individuals. Grey bars separate

the conventional diagnostic criteria, delineating matrix regions of within-
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and between-group (off-diagonal) similarity. b Plots of average similarity of each
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Fig. 3 | Symptom dimensionality reduction. a Cross-correlations between each
pair of psychometric measures. b Component selection. Four components were
retained which explained 57.3% of the variance in the original symptom scores. ¢ The

scores for each component across individuals within the three different clinical
cohorts. d The loadings of the different symptom scores onto these four components
are shown as bar plots.

group similarity to SCHZ (£=6.0, pyo,s<0.001), but not BPD (t=2.3,
Prons=0.069). ADHD-SCHZ similarity was significantly lower than the
ADHD-BPD one (t =3.72, pjonr=0.001). On the contrary, the post-hoc
comparisons for BPD showed that within-group similarity was only mar-
ginally greater than between-group similarity with SCHZ (t=2.5,
Pronf=0.049) and statistically comparable to between-group similarity with
ADHD (t = 0.5, pponr= 1.0). BPD-SCHZ and BPD-ADHD similarities were
not significantly different (£ =2.03, pyonr= 0.138). Altogether, SCHZ and
ADHD broadly showed stronger within- than between-group similarity,
whilst BPD patients showed a pattern of similarity with either SCHZ or
ADHD patients.

Transdiagnostic psychometric dimensionality reduction
Across the 28 available psychometric scales and sub-scales there was gen-
erally strong overlap between clinical conditions. Cross correlations

between these normalised psychometric measures showed a mixture of
positive and negative relationships (Fig. 3a), with the strongest values
representing those which largely measure the same construct (e.g, BPRS
depression and anxiety subscale correlates strongly with the total Hamilton
depression score) and negative relationships between those measuring
conceptually diverging constructs (e.g., the Adult Self-Report Scale pri-
marily assesses ADHD symptomatology and shows mostly negative cor-
relations with the Chapman Scales of psychosis proneness). Given the
number of highly correlated measures, we utilised principal components
analysis (PCA) on these psychometric variables across all patients, resulting
in four variables which met eigenvalue one criterion and explained 57.3% of
the total variance (Fig. 3b). These component scores retained significant
overlap across the diagnostic groups (Fig. 3c), although PC2 showed a
clearer separation across them than most of the original psychometric
distributions (Fig. 3a). The first principal component (PC1) represented
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general psychopathology with positive loadings across all psychometric
measures (Fig. 3d). The subsequent 3 components showed more specific
patterns of positive and negative loadings. PC2 captured a unified dysre-
gulation and impulsivity framework encompassing psychotic and depres-
sive symptomatology, with strongest loadings for positive and negative
symptoms, psychosis proneness, as well as depression and anxiety, but also
some inattention sub-scores (i.e., avoid start, detail, and organisation) of the
Adult Self-Report Scale and the motor impulsiveness items of the Barratt
Impulsiveness Scale as negative loadings. PC3 captured a constellation of
manic symptoms, with very strong loadings for mania (both the BPRS and
YMRS), energy, and motor impulsiveness. Interestingly, there were also
negative loadings for the Adult Self-Report Scale of ADHD symptoms, with
the exception of overactivity. Finally, PC4 captured cognitive complexity
and psychotic symptoms (both positive and negative symptoms), but unlike
PC2, the loadings for depressive symptoms were negative. Given the
strongest loading is for cognitive complexity, this component may be
separating patients that show relative preservation from cognitive decline.
Additionally, this component shows positive loadings across the impulsivity
measures which are all negative in PC2.

Molecular-enriched networks

We utilised REACT, as summarised in SI-Fig. 2, to produce a set of molecular-
enriched networks for the CamCAN and UCLA healthy subjects as well as
UCLA clinical cohorts. In essence, these networks capture the spatiotemporal
relationships between fluctuations in the BOLD signal and the spatial dis-
tribution of different molecular systems delineated by PET/SPECT templates
(subsequently referred to as molecular templates) derived from independent
cohorts of healthy controls. This is achieved using a two-step multiple
regression analysis which yields one map of molecular-enriched FC for each
subject and molecular system that can be utilised for subsequent analyses.
Within these molecular-enriched FC maps, positive values reflect stronger
coupling to the dominant BOLD fluctuations within the distribution of a
given molecular system whilst negative values represent anti-correlation to the
dominant BOLD fluctuations within the distribution of a given molecular
system. The details of REACT are discussed at length within™.

These networks are shown averaged across healthy individuals from
both datasets in SI-Fig. 2b. The correlation coefficients between the different
molecular templates used in the REACT analysis (SI-Fig. 2c) as well as
between the molecular-enriched networks (SI-Fig. 2e) were moderate, with
generally stronger overlap within the neuromodulatory and excitatory/
inhibitory neurotransmitter groups than between them. VIF values between
the different molecular templates were also moderate (SI-Fig. 2d), but
importantly not surpassing the rule-of-thumb value of 5 above which issues
of collinearity are considered sufficiently high to warrant additional con-
sideration. Finally, the cross-correlations between the resulting molecular-
enriched (SI-Fig. 2e) networks showed a similar pattern to the cross-
correlations of the molecular templates from which they were derived (SI-
Fig. 2C), again showing generally stronger overlap within the neuromo-
dulatory and excitatory/inhibitory neurotransmitter groups than between
them. Overall, these networks capture different parts of the BOLD signal
relating to the spatial distribution of different molecular systems.

Modelling the normative molecular-enriched brain

Normative models were trained on 70% of the healthy control data across
both UCLA and CamCAN datasets and tested on the remaining 30%. These
trained models explained a moderate amount of variance (EV) in molecular-
enriched networks in this unseen data using age and sex as predictor variables.
This EV varied substantially between molecular enriched-networks and
across ROIs (SI-Fig. 4). Herein, all analyses utilise only regions that had
positive EV for that receptor system (from the total of 443 regions, this was
319,307,296, 257,418,and 421 for NAT, DAT, SERT, VAChT, mGluR5, and
GABA-A respectively). This reflects the spatial heterogeneity of the
molecular-enriched networks, with each system being associated with key
nodes in the brain and poorly associated with other regions for which the
normative models failed to converge on a stable estimate.

Comparing deviations from normality across conventional
diagnostic groups

Our normative modelling produced deviation scores for the healthy subjects
and patients (one deviation value per RO], subject, and molecular system,
which are shown averaged in SI-Fig. 3). These deviations, represented as
either positive or negative values, indicate how much a subject’s molecular-
enriched FC for a specific brain region deviates from the established nor-
mative FC model derived from healthy controls. A positive deviation value
in a certain ROI indicates that its’ functional coupling with areas of high
receptor density is more pronounced than typically observed, reflecting
potentially more synchronous or integrated activity of this ROI within the
molecular-enriched network. Conversely, negative values indicate that the
ROT’s FC with areas of high receptor density is reduced, suggesting a
decrease in synchronisation or integration within these receptor-rich
regions compared to the norm. It is crucial to note that while these devia-
tions in molecular-enriched FC reveal variations in connectivity patterns,
they do not directly measure or imply changes in neurotransmitter activity.
Instead, these metrics help us understand how networks, hypothesised to be
modulated by specific neurotransmitter systems based on receptor density,
function in comparison to a normative framework. These deviation scores
were compared across groups for each molecular system with 1 x 4 ANO-
VAs. The tests revealed statistically significant differences within the
VAChT and mGIuR5 systems (Fig. 4a). Lower-level t-tests revealed that the
VAChT result was driven by differences between HCycpa and SCHZ, with a
mixture of regions where patients had molecular-enriched FC values greater
or lower than the normal population ranges, including the left putamen, left
angular gyrus, bilateral precuneus, left supplementary motor area (SMA),
right hemispheric lobule IX, and vermal lobule VIIIb. Post-hoc tests on the
deviations related to the mGluR5-enriched network showed differences
between HCycra and both SCHZ and BPD (Fig. 4b), with differences
largely being in the direction of FC values lower than the normal range for
these two clinical cohorts. Significant clusters were localised in vermal lobule
VIand the right mid-occipital cortex (Fig. 4b). It is also worth noting that the
mGluR5 system had many clusters just below the significant threshold,
including the right insula (F = 6.13, p = 0.059 and SMA (F = 5.86, p = 0.059).
No significant differences were found between HCycpa and the ADHD
group in any of the molecular-enriched networks. When considering dif-
ferences between the clinical groups, lower-level comparisons additionally
revealed that within the cholinergic system, BPD patients had greater
deviations than ADHD patients in the left precuneus and that SCHZ
patients had greater deviations than ADHD patients within bilateral pre-
cuneus, left SMA, left angular gyrus, left pallidum, right hemispheric lobule
IX, and vermal lobule VIIIb, similarly to what seen between SCHZ and
HCycpa. For the glutamatergic system, SCHZ patients showed significantly
greater deviations from the normal range than ADHD within the vermal
lobule VI. Overall, these results highlighted between-group differences
largely driven by SCHZ for the VAChT-enriched network and both SCHZ
and BPD for the mGluR5-enriched network, and indicated that the range of
deviations within ADHD is comparable to those seen in the healthy
controls.

To examine whether we could produce a summary metric character-
ising each subject’s deviations within a given system rather than having one
value for every ROL, we computed the mean deviation values across regions
and statistically compared these across the different groups of participants
using 1 x 4 ANOVAs. We found significant differences across groups for the
summary deviation metric related to mGluR5- (F=4.62, p <0.001) and
GABA-A-enriched networks (F=3.24, p=0.02; SI-Fig. 5). Lower-level
Tukey honestly significant difference tests revealed significant differences in
summary deviation metrics for mGluR5-enriched networks only between
SCHZ and healthy controls (p.,,»=0.003) as well as BPD and healthy
controls (P =0.022). Similarly, lower-level comparisons for GABA-A-
enriched network’s summary metrics showed significant differences for
SCHZ compared to healthy controls (p..,=0.014). All these differences
indicated a lower molecular-enriched FC in patients than healthy controls,
in line with the broadly negative t values across the brain seen in the ROI-
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to the order of the sub-box titles such that when the left group has greater deviations
these are blue and when the right group has greater deviations these are red/yellow
(A; anterior view, L; left view, R; right view, S; superior view).

wise analysis (see Fig. 4b). The summary deviation metrics that showed
significant differences in lower-level comparisons were then used within a
binary logistic regression, which revealed a moderate capacity to dis-
criminate patients with SCHZ (SI-Fig. 5a/c) and BPD (SI-Fig. 5b) from
healthy controls. Specifically, the mean mGluR5-enriched network sum-
mary deviation metrics had an area under the curve (AUC) of 0.75 for SCHZ
and 0.66 for BPD. Similarly, the mean GABA-A-enriched network sum-
mary deviation metrics resulted in an AUC of 0.73. Overall, this analysis
revealed that summary metrics of some of the networks under exam,
including those related to GABA-A and mGluR5, are useful markers of
deviation from normality for SCHZ and BPD.

Between-subject FC deviation similarity

As done for the symptom scores, we examined the between-subject corre-
lations across all ROIs deviation scores for each molecular-enriched func-
tional network (Fig. 5a) and calculated the within-group similarity of FC
deviations from normality by averaging each individual’s similarity with the

other individuals of the same group. Between-subject correlations were
calculated within each molecular system (Fig. 5a), providing a measure of
how similar subjects’” deviation scores are across individuals in the same
group and between different groups. The healthy controls were consistently
dissimilar from each other, with the distribution of their within-group
similarity centred around zero (Fig. 5b). Kolmogorov-Smirnov tests
revealed that the distribution of within-group similarity in SCHZ and BPD
were significantly different to those in HCycy4 for all molecular-enriched
networks (SI-table 2), generally showing greater mean within-group simi-
larity in patients than HCycpa (SCHZ > BPD > ADHD > HCycpa). The
ADHD group showed significant differences from the HCy; 4 distribution
for NAT and DAT, but not for the other molecular-enriched networks (SI-
table 2), although none of these ADHD results survived Bonferroni cor-
rection (p <0.05 / 18).

We also estimated the between-group similarity for each clinical
cohort, i.e., the mean FC deviation similarity of each patient with individuals
of different clinical cohorts, and compared within- and between-group
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Fig. 5 | Deviation similarity within and between groups. a Matrices of between-
subject correlations of deviation scores across ROIs for each pair of individuals
within and between groups. b The correlation coefficients for within-group simi-
larity are displayed as density plots. ¢ The relationship between patients’ similarity to

the other patients across all diagnostic groups and the overall deviation burden
categorised by mean deviation score across their whole brain (top row) as well as
each symptom component. Asterisks denote relationships that are significant fol-
lowing Bonferroni correction (p < 0.05/30).

similarity scores using non-parametric repeated measures ANOVAs and
post-hoc comparisons (SI-table 4). SCHZ consistently showed greater
within- than between-group similarity both with BPD and ADHD groups,
whilst both BPD and ADHD showed comparable within- and between-
group similarities, with few exceptions (within-group similarity of BPD was
significantly different than BPD-ADHD similarity for SERT- and VAChT-
enriched networks; within-group similarity of ADHD was significantly
different than between-group similarity with BPD and SCHZ for the SERT-
enriched network, and with SCHZ for the mGluR5-enriched network).
Overall, unlike the psychometry, ADHD patients showed lower within-

than between-group similarity, indicating that brain’s FC deviations do not
present any homogeneous patterns within this clinical cohort, but present
some similarities with the other clinical groups.

Transdiagnostic similarity of deviation scores

After calculating transdiagnostic similarity of FC deviation scores by aver-
aging each patient’s similarity to the other patients, disregarding diagnostic
labels, we explored the link between these patterns and the summary
deviation metrics presented in 2.6 to measure the link between transdiag-
nostic similarity and degree of FC deviation from normality. Significant
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for PC2 are shown again here for context. Of note, whilst the diagnostic groups are
reported in different colours within the scatter plots, this is purely for visualisation
purposes and these analyses were run transdiagnostically across all patient groups.

negative correlations were observed between summary deviation metrics
and transdiagnostic similarity across networks involving NAT, SERT,
mGluR5, and GABA-A, even after applying Bonferroni corrections
(Fig. 5¢). In other words, individuals with greater transdiagnostic similarity
tend to have abnormally lower FC values compared to those typically seen in
healthy individuals. This result indicates a link between FC deviation pat-
terns shared across neuropsychiatric patients and the severity of their
neuropathological conditions, irrespective of their diagnostic labels.

We further investigated the association between the degree of trans-
diagnostic similarity of deviation scores and symptom sub-domains,
hypothesising that patterns of FC deviations shared across disorders could
be linked to similar symptomatology. Significant correlations following
Bonferroni correction were found between PC2, i.e., the component cap-
turing psychotic, depressive, inattentive and, impulsive symptomatology,
and SERT, VAChT, and mGIuR5, highlighting greater transdiagnostic
similarity being related to greater PC2 scores (Fig. 5¢ and SI-table 3). No
significant correlations were found between transdiagnostic similarity and
the other PCs.

Transdiagnostic deviation-symptom mapping

We examined the relationships between the four PCA-based transdiag-
nostic symptom sub-domains and FC deviations from normality within
each ROI and molecular-enriched network. Varying patterns of both
positive and negative deviation-symptom relationships were seen across
enriched-networks and components (SI-Fig. 6). However, only the rela-
tionships between the component associated with the complex

dysregulation symptomatology (i.e., PC2) and the FC deviations from
normality in the VAChT- and mGluR5-enriched networks were significant
(Fig. 6b). VAChT-enriched FC deviations showed significant relationships
with PC2 spanning bilateral insular and opercular regions as well as the left
mid-cingulate, SMA, and precuneus. The mGluR5-enriched FC showed
relationships with PC2 spanning similar bilateral insular and opercular
regions, as well as the bilateral superior temporal gyri (STG), bilateral
cuneus, left lingual gyrus, bilateral mid-cingulate, and bilateral SMA. Both
these relationships were negative, such that higher symptom scores were
associated with molecular-enriched FC lower than the normative popula-
tion (Fig. 6¢). Overall, these findings indicate that irrespective of diagnostic
classification, there is a link between variations from typical FC levels in the
VAChT- and mGluR5-enriched networks and transdiagnostic sub-domain
encompassing psychotic, depressive, inattention, and motor impulsiveness

symptoms.

Discussion

Here, we bring together two novel classes of neuroimaging analytics which
hold significant potential to circumvent key barriers to the neurobiological
characterisation and mechanistically informed treatment of neu-
ropsychiatric disorders. Our normative models performed comparably to
previous work on structural neuroimaging data, but additionally captured
both functional and molecular facets of the brain. Normative modelling
revealed more robust between-group similarities and deviation-symptom
relationships than conventional REACT analyses, emphasising the power of
describing neuropathology as divergence from estimates of healthy ageing.
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Our between-group findings converge to broadly implicate the glutamate
and GABA in SCHZ and BPD (possibly reflecting altered excitatory-
inhibitory balance), the cholinergic system in SCHZ, and largely failed to
find specific disorder-based alterations in ADHD. However, moving
beyond these categorisations, we found substantial similarity between
individuals transdiagnostically and that deviations mapped onto symptom
scores across groups. Interestingly, the transdiagnostic sub-domain we
identified with PCA, which encompasses psychotic, depressive, inattentive,
and motor impulsive symptoms across SCHZ, BPD, and ADHD, was able to
capture a new, broad symptomatology spectrum within which patients
with different diagnostic categorisations are situated. Furthermore, these
transdiagnostic symptoms were linked to abnormal variations from typical
FC levels in the VAChT- and mGluR5-enriched networks. Herein, we
discuss these key findings in light of the challenges presented by the mul-
tiscale organisation of the brain and heterogeneity within clinical
neuroscience.

Despite departing from the typical use of structural imaging features,
our models explained a comparable amount of variance to a recently pub-
lished paper which modelled grey matter volume™, despite the fact that
functional imaging data is higher dimensional and noisier, which translates
into a greater variability. This constitutes a significant step forward for
normative modelling, suggesting that this nascent field can begin to addi-
tionally exploit the rich spatiotemporal dynamics of functional imaging,
which may offer benefits over and above measures of grey and white matter
in characterising neurobiological heterogeneity. Our results move beyond
both conventional structural and functional MRI measures, which are
inherently incapable of providing insights into their cellular and molecular
underpinnings. The use of molecular-enriched functional imaging
approaches offers a tantalising opportunity to circumvent these barriers and
make use of already abundant fMRI data to provide insights spanning the
molecular and systems levels™. Crucially, this enables a non-invasive
characterisation of dysfunction that is directly amenable to targeted phar-
macotherapeutic intervention in a scalable manner. This could be achieved
through a broad categorisation of which molecular-enriched networks are
altered by acute drug challenges with different compounds, allowing these to
be targeted in patients showing substantial deviations within networks
enriched with the same molecular targets. This work offers a provisional
proof-of-concept set of results that should be further expanded with more
comprehensive datasets, e.g., including treatment responsiveness required
to meaningfully test these findings.

Our between-group analyses broadly converged upon the glutama-
tergic and GABAergic systems, potentially reflecting excitatory-inhibitory
(E/T) imbalance, which is a widely implicated facet of neuropathology in
SCHZ and BPD™, and provides confidence in our methods. Across all our
analyses comparing deviations between SCHZ and controls we identified
differences in the glutamatergic and/or GABAergic systems, with patients
broadly showing FC values lower than the normative ranges and greater
similarity to one another than healthy individuals. Within SCHZ, various
aspects of glutamatergic and GABAergic (dys)function are evidenced by key
risk loci within genetic studies™*, altered resting gamma power* ™, sen-
sory gating deficits”"*, changes in various TMS-EEG paradigms™, reduced
mismatch negativity amplitude’”, reduced hippocampal of NMDA and
GABA-A receptor density’*, lower post-mortem levels of the GABA
synthesising enzyme glutamate decarboxylase 67°°*, and parvalbumin-
positive interneurons in SCHZ™ . Although some of these measures have
also shown null findings in additional studies, this critical mass of literature
strongly implicates E/I imbalance within SCHZ>****", We further add to
this overall picture with results relating to both glutamate and GABA,
supporting the idea that E/I imbalance in SCHZ emerges from an interplay
of these two systems, as opposed to one or the other, which remains an
outstanding issue within the field®. Similarly, the glutamatergic system was
consistently implicated in BPD across our analyses. Despite a heavy focus on
monoamines for over half a century, the glutamatergic system is increas-
ingly thought to play a key role in mood disorders”. A meta-analysis of
magnetic resonance spectroscopy studies found that glutamate levels were

elevated in BPD compared to controls when all brain areas were combined,
regardless of medication status®. A follow-up meta-analysis largely corro-
borated this, identifying increased frontal glutamate and decreased
mismatch-negativity”’. Additional evidence from genetics™°, blood and
urine markers””™, as well as post-mortem studies* ™ point towards glu-
tamatergic dysfunction. We found no significant differences between glu-
tamatergic or GABAergic deviations within SCHZ and BPD, whilst SCHZ
and ADHD showed differences for both mGlur5 and VAChT which mir-
rored differences between SCHZ and controls. This suggests a general
neurobiological similarity between SCHZ and BPD whilst ADHD partici-
pants more closely resembled controls. Our results are therefore broadly
convergent with previous accounts of E/I imbalance in these disorders as
well as some level of shared underlying neuropathology, offering confidence
that our normative modelling approach aiming to link molecular- and
systems-level mechanisms is capturing meaningful aspects of neuro-
pathology. Furthermore, the failure of our conventional REACT analyses to
identify any between-group differences emphasises the value of describing
pathology as divergence from normative values. Moreover, the fact that
these differences were captured by whole-brain mean deviation summary
scores provides tentative support that this approach could be used to create
simplified clinical readouts of the integrity excitatory and inhibitory
molecular-enriched networks.

The cholinergic findings relating to SCHZ throughout our results are
intriguing. All currently approved antipsychotics target the dopamine D2
receptor”, with actions on ventral tegmental area (VTA) dopaminergic
neurons thought to underlie therapeutic efficacy in reducing positive
symptoms whilst unwanted action on the substantia nigra results in
extrapyramidal side effects****’. However, current treatments provide little
benefit for negative or cognitive symptoms and many patients continue to
experience residual positive symptoms or remain treatment-resistant’"”.
There is increasing interest in novel cholinergic compounds being able to
treat SCHZ symptoms, including positive, negative, and cognitive symp-
toms, whilst not being associated with the long-term side effects of dopa-
minergic antipsychotics™”. Anticholinergic drugs can induce or exacerbate
confusion, delirium, cognitive impairment, and hallucinations, with this
mimicry of psychiatric symptoms indicative of the role cholinergic
mechanisms may play in these symptoms when arising clinically”™”.
Conversely, in the 1990’s xanolemine, a muscarinic antagonist being
developed for cognitive symptoms of Alzheimer’s disease, was noted to have
antipsychotic effects™, and these results have been replicated in SCHZ
patients”™”. Interestingly, these studies showed benefits for positive and
negative symptoms, but also cognitive performance. Crucially, xanolemine’s
efficacy is not mediated by direct action on D2 receptors'”. Therefore,
pharmacological manipulation of the cholinergic system has been robustly
demonstrated to induce or ameliorate the symptoms of SCHZ. Our findings
add credence to this view, suggesting that the cholinergic system is related to
altered systems-level dynamics in SCHZ compared to controls and that
individuals with more negative cholinergic deviations had greater PC2
scores, which reflect core SCHZ symptoms. It is therefore tempting to
speculate that xanolamine may act to normalise the cholinergic dysfunction
spanning molecular and systems levels identified here. This may be medi-
ated through indirect actions of the laterodorsal tegmentum on the dopa-
minergic  system'*"'”, potentially preferentially acting on VTA
dopaminergic neuron firing whilst sparing the substantia nigra, mitigating
extrapyramidal side effects and tardive dyskinesia'”. However, additional
preclinical evidence supports the idea that xanolemine may act by mod-
ulating glutamatergic microcircuits, which may in turn also impact dopa-
minergic transmission'”"'*. These complex receptor sub-type-specific
mechanisms have been discussed at length recently”***'””. However, a key
point is the emerging idea that novel cholinergic compounds could provide
antipsychotic effects through conventional dopaminergic pathways thought
to drive positive symptoms, but additionally benefit negative and cognitive
symptoms not ameliorated by current treatments™”*. Our PC2 relates to a
broad range of psychotic symptoms, potentially supporting links through to
the cholinergic system regardless of diagnosis.
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The lack of results for ADHD throughout our analyses is generally
consistent with this disorder being extremely heterogeneous. Indeed, pre-
vious work utilising normative models of grey and white matter volume
found that almost no brain regions showed consistent deviations within
ADHD patients™ and a recent meta-analysis of 96 structural and functional
imaging studies in ADHD found a lack of regional convergence'”. Similarly,
we identified no significant differences between ADHD subjects and healthy
controls within any brain region nor in our summary measures of mean
deviation scores. Intriguingly, we did find significant differences in the
distribution of between-subject similarities for ADHD participants and
controls for the noradrenergic and dopaminergic-enriched networks,
although distributional differences were small and did not survive Bonfer-
roni correction. The catecholamines are long implicated in the pathophy-
siology and treatment of ADHD'*"", adding credence to these similarity
analyses which may offer an alternative lens through which to view the
pattern of deviations across subjects. Analogous to the recent combination
of normative modelling and network-lesion mapping, wherein deviations
are examined for co-localisation to common networks™'"", it would be
interesting to examine whether deviations within ADHD map onto regions
strongly influenced by catecholaminergic transmission. This could be
indexed through connectivity patterns of the noradrenergic locus coeruleus
and dopaminergic ventral tegmental area, the distribution of different
catecholaminergic receptors and transporters, or some multi-modal com-
bination of these converging measures. A larger sample focussed explicitly
on characterising ADHD deviations and symptomatology would be better
placed to investigate this possibility. However, we cannot exclude the pos-
sibility that ADHD is associated with more subtle differences in neural
measures such as molecular-enriched functional networks, which are harder
to detect than potentially more substantial pathophysiology within SCHZ
and BPD.

Despite receiving different diagnoses, we found transdiagnostic simi-
larities across groups within our analyses. Patients’ symptom scores were
broadly correlated regardless of diagnosis, indicative of highly overlapping
clinical phenotypes and this was substantially recapitulated in the deviation
scores. Overall, SCHZ patients broadly showed greater within- than
between-group similarity, whilst BPD and ADHD patients showed a more
mixed profile, emphasising the highly overlapping nature of both symptoms
and neurobiology, reflecting the fact that current diagnostic labels to not
provide sufficient precision to fully differentiate groups or robustly target
treatment.

The level of transdiagnostic deviation similarity for noradrenergic,
serotonergic, glutamatergic, and GABAergic systems was inversely related
to the summary deviation scores, indicating that those who were more
similar had greater negative deviation, i.e., FC values lower than the normal
ranges of the healthy population. Likewise, the level of transdiagnostic
similarity in terms of FC deviations in the serotonergic, cholinergic, and
glutamatergic functional networks was related to strong symptom scores
related to psychotic, depressive, inattention and impulsiveness symptom
domains (PC2). These within-group and transdiagnostic similarity analyses
may also relate to a general body of literature which suggests that neuro-
pathology associated with various disorders of the brain may restrict the
repertoire of network states a brain can inhabit'>'"*. When considering
direct relationships between deviations and our dimensionally reduced
symptomatology components, we found transdiagnostic relationships fur-
ther linking these PC2 symptom domains through to cholinergic and glu-
tamatergic network deviations. Importantly, this symptom spectrum
captures positive loadings from positive and negative psychotic symptoms
and depressive symptoms, as well as negative loadings from the adult self-
report scale of ADHD symptoms, creating a symptom spectrum upon
which individual patients can be situated according to their specific
symptoms, regardless of diagnosis. These similarity-symptom and
deviation-symptom mapping approaches offer innovative approaches to
delineate novel transdiagnostic symptom-network spaces which may form
the basis for novel biomarkers in the longer term.

It remains unclear why we found cholinergic and not dopaminergic
results across these analyses, given the core role dopamine is thought to play
within the pathophysiology of SCHZ***. The distribution of dopami-
nergic and cholinergic transporter density strongly overlaps within key
regions such as the striatum. It is therefore possible that our cholinergic
results additionally reflect dopaminergic mechanisms, especially given how
strongly mechanistically intertwined these systems are in shaping cortico-
striato-thalamic circuitry' . Moreover, there is high VAChT density within
the thalamus, another region implicated in the pathophysiology of
SCHZ"*'", potentially contributing to the cholinergic findings. Regardless
of the precise delineation between the two systems, these regions which
differ between groups and relate to transdiagnostic symptomatology are
influenced by the cholinergic and dopaminergic systems, with neurobio-
logically plausible accounts for cholinergic dysfunction giving rise to mul-
tiple symptoms in SCHZ. Future methodological development will be
crucial to carefully tease apart relationships where receptor density and
pathophysiology are highly colocalised and link these measures through to
treatment. Future work could consider examining deviations within
dopaminergic, cholinergic, glutamatergic, and GABAergic receptor sub-
types to allow for clearer delineation between putative drug targets and core
symptom domains. Alternatively, focusing on results which converge with
other methodologies such as using seed-based connectivity from dopami-
nergic and cholinergic nuclei may be beneficial. Additionally, the availability
of treatment response outcome measures would allow for the direct
examination of whether dysfunction in a given molecular system is indeed
predictive of treatment responsiveness to an intervention which targets that
system. Methodological progress on this front will be crucial to move
beyond simplified accounts of neurobiology and neuropathology, con-
sidering the full complexity of multiple neurotransmitter systems acting in
concert.

This work is not without limitations. As with all molecular-enriched
network analyses, we utilise group average molecular templates acquired in
separate healthy subjects. The validity of this approach has been described
extensively within the broad literature utilising PET/SPECT and tran-
scriptomic data within neuroimaging, as discussed at length in ref. 33.
However, it is important to acknowledge these templates were acquired in
separate subjects and using different methodologies, resulting in differences
in resolution despite being normalised into the same space. Several of these
molecular enriched-networks also show moderate collinearity, which
requires careful consideration in the multiple-regression approach
employed within REACT. However, we show that VIF values are below 5,
suggesting that levels are not broadly problematic in the models employed
here. This may present a barrier to the inclusion of additional receptor
systems in the future, and finding new ways to examine the full repertoire of
molecular systems and sub-systems within the human brain will be
important in the longer term. The cross-sectional nature of our data also
confines us to observe associations rather than establishing causal rela-
tionships between deviations and clinical measures. Longitudinal studies are
imperative to delineate the true temporal trajectory of molecular-enriched
networks and their relationships to symptomatology as well as characterise
their potential diagnostic, prognostic, and treatment-predictive capabilities.
Similarly, the sample sizes of the clinical cohorts utilised here were relatively
small, with our proof-of-concept results requiring follow-up in more
robustly powered samples, ideally also including a diverse set of patients
which often fall outside the scope of the strict selection criteria of smaller
studies. Additionally, we only tested our deviation-symptom mapping in
one dataset. Future work will require a simplified set of transdiagnostic
symptom measures such that the same relationships can be tested in
replication samples. Finally, we cannot exclude the possibility that treatment
within the clinical cohorts may impact the estimation of deviations within
the molecular-enriched functional networks, potentially reducing the extent
of deviations in those subjects responding well to treatment while inducing
deviations in regions of high target engagement but minimal contribution to
pathology. Future studies examining drug-naive populations, or with
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sample sizes sufficiently large to attempt to control for treatment type, will
be important moving forward. Demonstration that deviations characterised
by combining molecular-enriched network analyses and normative mod-
elling are actually predictive of treatment outcomes will be the ultimate test
of the extent of these limitations.

The integration of novel functional-molecular neuroimaging techni-
ques, normative modelling, and a transdiagnostic perspective utilised here
offers methodological and theoretical progress towards an understanding of
the shared neurobiological foundations that underpin psychiatric condi-
tions. Our transdiagnostic approach moves away from case-control analyses
and offers an interesting way to situate clinical groups or individuals within
between-subject similarity and deviation-symptom landscapes, which when
scaled up across diagnoses, symptomatology, and molecular systems may
offer novel perspectives on how complex aberrations of affect and cognition
map onto dysfunction spanning molecular and systems level readouts. The
long-term goal of this approach would be to build analytic bridges between
these neuroimaging-derived brain phenotypes and treatments. Regardless
of the progress made in diagnostics and prognostics, these both serve the
ultimate goal of facilitating the provision of the right treatment to the right
patient at the right time. The opportunity to link symptoms to non-invasive
measures of molecular mechanisms amenable to pharmacotherapeutic
intervention may prove a useful tool for precision psychiatry in the
longer term.

Methods

Datasets

This study utilises two separate existing datasets. Firstly, the healthy ageing
CamCAN dataset (obtained from the CamCAN repository available at
http://www.mrc-cbu.cam.ac.uk/datasets/ CamCAN/""*'"") was chosen as it
spans the full spectrum of healthy ageing. This allows normative models to
provide relatively robust estimates across different test datasets, permitting
some level of generalisability for subsequent investigations. Secondly, the
UCLA phenomics dataset (ref. 120, available from https://openneuro.org/
datasets/ds000030/versions/1.0.0), was selected as it included healthy indi-
viduals as well as multiple psychiatric cohorts with deep clinical pheno-
typing, allowing for examination of deviations from healthy individuals
both within and across conventional diagnostic boundaries. Full details of
the participants from each dataset as well as the inclusion and exclusion
criteria are included in the supplementary materials.

Clinical and behavioural data

A comprehensive list of the behavioural assessments can be found in Table 3
of the original manuscript'”’. Here, we utilised symptom measures from the
Young Mania Rating Scale-C (YMRS), Hamilton Psychiatric Rating Scale
for Depression (HAMD-17), Brief Psychiatric Rating Scale (BPRS), Hop-
kins Symptom Checklist (HSCL), and Adult Self-Report Scale v1.1 Screener
(ASRS). Additional trait measures included in our analyses were the Barratt
Impulsiveness Scale (BIS), Scale for Traits that Increase Risk for Bipolar II
Disorder (BPT), and the Chapman Scale for Perceptual Aberrations
(CHAP). Symptom and trait scores selected had data available across all
three clinical groups, providing measures of symptoms that are con-
ventionally associated more with one of the diagnostic groups, but with
potential involvement within each. Participants with incomplete demo-
graphic or psychometric data were excluded. Where relevant sub-scores
were available for these symptom and trait measures, we utilised these
within subsequent analyses to preserve the rich dimensionality of this
phenotypic data. Where sub-scores were not available, we used the total
summary score. In total, this offered 28 measures. Each measure was plotted
as density curves split by clinical diagnosis to see how overlapping or non-
overlapping they were.

We additionally examined within- and between-group similarity of
these scores. We created a correlation matrix to examine how correlated
each subject was to every other subject across all 28 clinical scores available.
Then, we utilised non-parametric repeated measures ANOVAs imple-
mented with Friedman test and Conover’s post-hoc comparisons to

examine whether each group differed in its within- and between-group
similarity, applying Bonferroni correction for multiple comparisons.

Dimensionality reduction of psychometry

We examined the level of collinearity between the large number of different
highly colinear clinical measures available within the UCLA dataset asso-
ciated with deep phenotypic characterisation. Given the high levels of col-
linearity observed, we utilised principal components analysis (PCA,
implemented in Python using sklearn) to reduce the 28 different psycho-
metric sub-scores and summary scores into a smaller set of components
explaining a substantial portion of the variance in these scores across sub-
jects. The psychometric data was normalised (using sklearn.prepro-
cessing.StandardScaler) prior to being entered into the PCA and no rotation
was employed. Importantly, we pooled together the scores across the three
clinical cohorts to examine this symptomatology trans-diagnostically with
the aim of identifying constellations of related symptoms. Components
were retained based on the eigenvalue one criterion.

Imaging acquisition and pre-processing

All imaging data was acquired on 3 T Siemens Trio scanners. Each subject
from both datasets had a structural T1 image and a resting state fMRI
acquisition, although field maps were only available for CamCAN subjects.
Extensive details on image acquisition and pre-processing can be found in
the supplementary materials.

Receptor-enriched Analysis of functional Connectivity by Tar-
gets (REACT)

We employed transporter and receptor density maps from the nora-
drenergic, dopaminergic, serotonergic, cholinergic, glutamatergic, and
GABAergic systems. These are group average templates derived from
healthy cohorts separate from the functional imaging datasets examined
here. These have been widely utilised in our previous work™""*'"** as well
as by the broader imaging community'**'*’. Here, we chose to use trans-
porters for the neuromodulatory systems as these provide a general measure
of the innervation and influence of a given receptor system over a given
region”. Further details regarding the templates are reported in the sup-
plementary materials.

For each subject, voxel-wise functional networks associated with each
of the molecular templates (NAT, DAT, SERT, VAChT, mGLuR5, and
GABA-A) were estimated utilising a two-step multiple linear regression
framework implemented in the REACT toolbox (version 0.1.7) (https://
github.com/ottaviadipasquale/react-fmri'”’). In the first step, the molecular
templates are spatially regressed against the fMRI data for each subject
within a multiple linear regression, yielding time series which capture the
dominant fluctuations for each molecular system™. These are then entered
into a second multiple linear regression, where they are regressed against the
BOLD time series from each voxel to produce a molecular-enriched net-
work map for each molecular template. To limit computational burden, we
then parcellated our voxel-wise networks using a custom combination of
different atlases. For the cortex, we utilised the Schaefer 400 region
parcellation'**. We additionally added 15 regions from the Harvard-Oxford
subcortical parcellation (left/right thalamus, left/right caudate, left/right
putamen, left/right pallidum, left/right hippocampus, left/right amygdala,
left/right accumbens, and brainstem)'*~'**. Finally, we also utilised 28 cer-
ebellar grey matter regions (all vermal and hemispheric lobules) from the
SUIT atlas"*"'*. Molecular-enriched FC values contained within each ROI
were averaged, resulting in a total of 443 molecular-enriched network ROI
values for each subject and each molecular system.

Normative modelling

In essence, this approach is used to generate individual molecular-enriched
FC deviation maps based on a model of what an individual’s molecular-
enriched network “should” look like, given their demographics. Previous
experimental work has described various normative modelling
approaches™* . As in most prior work, we implemented our normative
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models using the PCNtoolkit (version 0.27)*". We chose to utilise a hier-
archical Bayesian regression (HBR) approach which can accommodate
signal and noise variance in data from multiple sites by estimating different
but connected mean and variance components through shared prior dis-
tributions across sites™"*". A set of HBR models'’ were trained on healthy
participants data from both the UCLA and CamCAN datasets, utilising a
70/30 train test split (implemented with sklearn.model_selec-
tion.train_test_split to ensure each dataset is equally represented in both
training and test data), resulting in CamCAN = 346/150 and UCLA = 78/33
train/test subdivisions. By including both the CamCAN and UCLA data,
this allowed us to generate a relatively stable distribution of estimates across
the healthy ageing lifespan. A separate HBR model was estimated for each
ROI and each receptor system (i.e., a separate model is fit for each region of
the brain within each of the different molecular-enriched networks derived
from our REACT and parcellation pipeline), using the age and sex of par-
ticipants to build a predictive model of molecular-enriched FC values.
Specifically, we used site (UCLA, Cambridge) as a random effect as well as
age and sex as fixed effects, resulting in normative regional molecular-
enriched FC variance and uncertainty. Model performance was evaluated by
the amount of variance explained when applied to the test sample. The
subsequent analyses utilised only ROIs with positive explained variance
(EV), in order to exclude areas where the model failed to converge on a stable
estimate. Predictions using these models were also made for the clinical
cohorts, where age and sex were used to predict their molecular-enriched
networks. This provides both point estimates as well as measures of pre-
dictive confidence, allowing us to statistically quantify deviations from the
normative molecular-enriched networks with regional specificity. Specifi-
cally, we computed a deviation score for each brain ROIL which describes the
difference between the predicted molecular-enriched FC and the true
molecular-enriched FC, normalised by the prediction uncertainty. In all
subsequent analyses, we refer to the subset of healthy UCLA test subjects as
HCucra.

Analysis of deviation scores between diagnostic groups

In line with the conventional diagnostic boundaries, we first examined
whether the deviation scores differed between our three clinical cohorts and
the HCycra group. This was implemented ROI-wise as a 1 x4 ANOVA
within FSL’s Permutation Analysis of Linear Models programme (PALM'*)
2000 permutations and FDR correction). Lower-level t contrasts were used
to delineate which groups were driving each significant higher-level result.
To explore the added value of normative modelling, we repeated these
analyses on the original molecular-enriched FC values for each network as
would be done in a conventional REACT analysis (SI-figure 7).

We also collapsed down the deviation scores of each molecular-
enriched network to provide a single mean deviation score for each subject
across ROIs. This was motivated by the need for simple measures for
putative biomarkers to be clinically practicable. We therefore used this
summary metric describing whether FC of the network enriched with a
given molecular system for a given subject is globally shifted more towards
positive or negative deviations from normality ranges as well as the mag-
nitude of this shift. We then conducted a 1 x 4 ANOVA for each molecular
system to see whether these summary metrics differed between our three
clinical cohorts and the HCycy 4 subjects. This analysis was implemented in
Python (SciPy stats and statsmodels) with Tukey correction for lower-level
comparisons. To further investigate the diagnostic capabilities of these
summary metrics, we took significant between-group differences from
HCycra at the lower level and entered these mean values into a binary
logistic regression analysis. Receiver operating characteristic curves (ROC)
were plotted to display the trade-off between sensitivity and specificity. Area
under the curve (AUC) was used to quantify predictive performance. This
was also implemented in Python using statsmodels and sklearn.

Analysis of between-subject FC deviation similarity
We considered a novel approach to quantify how similar patterns of
deviations were within and between groups. We speculated that whilst the

HCycra individuals would show a random pattern of deviations from
normality, deviations within the patient groups may converge on similar
patterns relating to a common disease process(es). We also expected the
groups of patients to be more similar to one another than HCycpa, sig-
nifying transdiagnostic similarity. Correlation matrices were generated for
each molecular system, with each showing the correlation of FC deviation
scores across all brain regions between each pair of individuals from the
UCLA dataset (HCycra, SCHZ, BPD, and ADHD). This provides an
overview of similarity across individuals, including both how similar the
pattern of deviations is to those within the same group (within-group
similarity) as well as to those in a different group (between-group similarity).
We first compared the distributions of the within-group correlation coef-
ficients across datasets using two-sample Kolmogorov-Smirnov tests
(implemented in Python with scipy.stats). Additionally, to assess the extent
of similarity both within and across groups, we determined for each patient
their average similarity to individuals of their own group (within-group
similarity) and individuals from the other two groups (between-group
similarity). Subsequently, analogous to what was done with psychometric
data, we employed non-parametric repeated measures ANOVAs using the
Friedman test, along with Conover’s post-hoc analysis, to investigate dif-
ferences in within- and between-group similarity among the groups,
applying Bonferroni correction for multiple comparisons.

Finally, we estimated a transdiagnostic similarity metric to quantify the
average similarity of each patient to all other individuals across clinical
groups. This summary measure was then correlated with the summary
metric of mean FC deviation to examine the presence of a linear relationship
between FC deviation similarity and its magnitude on a transdiagnostic
level. Furthermore, we investigated the link between this similarity in FC
deviations and clinical sub-domains identified through PCA. This was based
on the speculation that individuals with closely matching FC deviations
from normative ranges might share a more uniform pathological brain state,
as indicated by their symptom profiles. This analysis was implemented in
Python and Bonferroni corrected for multiple comparisons across com-
ponents and molecular systems (p < 0.05/30).

Transdiagnostic deviation-symptom mapping

The relationships between the four symptom-based PCs and the molecular-
enriched network deviations from normality, expressed through the
deviation scores, were examined through mass univariate regression ana-
lyses. The resulting correlation coefficients reflect the magnitude of the
statistical relationship between clinical and deviation data within each ROI
across the brain. This was implemented through non-parametric permu-
tation testing (2000 permutations and FDR correction) using PALM. In
order to examine to what extent the normative modelling approach provides
additional benefit, we also ran the exact same analysis on the raw molecular-
enriched FC values, as would be done within a conventional REACT ana-
lysis (SI-figure 7).

Data availability

All data is available from open repositories as outlined within section 6.1.
Specifically, two datasets were used: the CamCAN repository available at
http://www.mrc-cbu.cam.ac.uk/datasets/CamCAN/ and the UCLA phe-
nomics dataset available from https://openneuro.org/datasets/ds000030/
versions/1.0.0).

Code availability
This work uses openly available and widely used pipelines and toolboxes,
with scripts implementing these available upon request.
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