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ABSTRACT

Placing a patient in a state of anaesthesia is crucial for modern surgical practice. However, the mechanisms by
which anaesthetic drugs, such as propofol, impart their effects on consciousness remain poorly understood. Propo-
fol potentiates GABAergic transmission, which purportedly has direct actions on cortex as well as indirect actions
via ascending neuromodulatory systems. Functional imaging studies to date have been limited in their ability to
unravel how these effects on neurotransmission impact the system-level dynamics of the brain. Here, we leveraged
advances in multi-modal imaging, Receptor-Enriched Analysis of functional Connectivity by Targets (REACT), to
investigate how different levels of propofol-induced sedation alter neurotransmission-related functional connec-
tivity (FC), both at rest and when individuals are exposed to naturalistic auditory stimulation. Propofol increased
GABA-A- and noradrenaline transporter-enriched FC within occipital and somatosensory regions respectively.
Additionally, during auditory stimulation, the network related to the dopamine transporter showed reduced FC
within bilateral regions of temporal and mid/posterior cingulate cortices, with the right temporal cluster showing
an interaction between auditory stimulation and level of consciousness. In bringing together these micro- and
macro-scale systems, we provide support for both direct GABAergic and indirect noradrenergic and dopaminergic-
related network changes under propofol sedation. Further, we delineate a cognition-related reconfiguration of
the dopaminergic network, highlighting the utility of REACT to explore the molecular substrates of consciousness

and cognition.

1. Introduction

The ability of anaesthesia to transiently and reversibly disrupt con-
scious experience has both revolutionised modern surgical practice as
well as provided a unique opportunity to link consciousness to its neu-
robiological substrates. However, the mechanisms through which this
altered state of consciousness emerges are far from fully elucidated, in
part due to the multiplicity of contributing systems which interact at
multiple levels (Alkire et al., 2008; Brown et al., 2010; Franks, 2008).
A thorough characterisation of these different systems supporting con-
sciousness may also offer novel therapeutic targets for disorders of con-
sciousness, for which we remain largely bereft of meaningful treatments.
As such, mechanistic investigation of anaesthetic agents and their phar-
macodynamic effects may provide fundamental insights into the brain,
with applications in both health and disease.

Much neuroimaging work investigating anaesthesia to date has
leveraged the powerful analytic approaches applied to blood-oxygen
level dependant (BOLD) signal fluctuations measured with functional
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magnetic resonance imaging (fMRI) whilst participants are at rest. Far
more than a baseline, this resting activity reflects inherent functional or-
ganisation of the brain as well as personal mentation (Binder et al., 1999;
Buckner, 2012; Stark and Squire, 2001). Anaesthesia seems to preferen-
tially perturb certain domains of brain function, having been largely
described to reduce within and between higher-level network connec-
tivity, while preserving sensory processing within lower-level primary
sensory cortices (Adapa et al., 2014; Boveroux et al., 2010; Craig et al.,
2021; Gili et al., 2013; Gémez et al., 2013; Guldenmund et al., 2013;
Liu et al.,, 2017; Mhuircheartaigh et al., 2010; Monti et al., 2013;
Naci et al., 2018; Nir et al., 2019; Qiu et al., 2017; Schroter et al.,
2012; Schrouff et al., 2011; Spindler et al., 2021; Stamatakis et al.,
2010; Tang and Ramani, 2016). As such, studies considering only
the resting state are limited in their ability to comprehensively in-
vestigate anaesthesia’s effects on the brain. Naturalistic stimuli of-
fer a powerful tool to engage ecologically meaningful sensory and
higher-level cognitive processes that do not also necessitate responses
(Finn, 2021). Therefore, they are well suited to examine how the neural
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substrates of perception and cognition persist or are extinguished under
anaesthesia.

The most widely used anaesthetic agents (including propofol,
sevoflurane, and isoflurane) potentiate GABA-mediated inhibition,
which alters activity in networks spanning brainstem, thalamic, and
cortical regions (Brown et al., 2010). However, whether these network
changes, and concomitant transitions into and out of consciousness, are
mediated by top-down (direct modulation of cortical and thalamocorti-
cal circuits) or bottom-up (ascending sub-cortical arousal systems exert-
ing influence over cortex) processes remains contentious (Mashour and
Hudetz, 2017). There are a host of highly conserved brainstem, mid-
brain, and forebrain nuclei whose widespread innervation exerts neu-
romodulatory control over the rest of the brain (Avery and Krich-
mar, 2017; Marder, 2012; Shine et al., 2019). These can modulate the
gain of receptive neuronal populations through altering their electri-
cal and synaptic properties, thus also affecting subsequent downstream
inter-regional communication (Aston-Jones and Cohen, 2005). More-
over, these systems can act in concert to produce an adaptive system that
shapes network topologies and dynamics (Brezina, 2010). Functional in-
tegrity of the default mode network (DMN), which is associated with
autonoetic consciousness (Guldenmund et al., 2017; Liu et al., 2015),
is reportedly under the neuromodulatory influence of dopaminergic FC
during propofol anaesthesia (Spindler et al., 2021). Conversely, another
recent study highlighted the importance of direct action of propofol
on cortical regions, with networks showing reduced connectivity un-
der anaesthesia also highly expressing parvalbumin positive GABAer-
gic neurones (Craig et al., 2021). As such, both neuromodulatory and
cortico-centric mechanisms seem to play a role (Lee and Mashour, 2018;
Nguyen and Postnova, 2021), with a paucity of studies examining these
effects in combination. Crucially, these need not be mutually exclu-
sive, and it has been suggested that bottom-up and top-down mecha-
nisms modulate separable dimensions of consciousness (Mashour and
Hudetz, 2017).

Comprehensive accounts of brain function must integrate micro-,
meso- and macro-scale mechanisms across different neural states
(Bassett and Sporns, 2017). Conventional rest, task, and naturalistic
fMRI analyses are inherently incapable of providing insights into the
molecular underpinnings of the BOLD signal. This limits theoretical un-
derstanding by leaving a conceptual void between receptor level mecha-
nisms and systems level dynamics. One solution to this has been to incor-
porate molecular information from positron emission tomography (PET)
and single-photon emission computerized tomography (SPECT) into
fMRI analyses, as in Receptor-Enriched Analysis of functional connectiv-
ity by targets (REACT), to help bridge the gap between these micro- and
macro-scale systems (O. Dipasquale et al., 2019). The resultant receptor-
enriched networks have demonstrated alterations under pharmacolog-
ical challenge (Dipasquale et al., 2020; O. 2019; Lawn et al., 2022a)
and within disease states (Cercignani et al., 2021; Martins et al., 2022;
Wong et al., 2022), but have also offered a promising tool to probe the
molecular substrates of consciousness and cognition. Each modulatory
system engages with a set of target receptors which exhibit diversity
in their patterns of expression as well as downstream effects which in-
teract in a complex pleiotropic manner. However, each system also has
transporters, engaged in movement of neurotransmitters across vesic-
ular and synaptic membranes, which serve as a coarse grain marker
for innervation and influence over a given brain region. Moreover, the
widespread arborisation of projections from these small nuclei produces
a spatiotemporal influence over the BOLD signal that lends itself well to
REACT. As such, these transporters offer a powerful means by which to
derive distinct molecular networks associated with each system that can
provide new insights into the effects of anaesthesia on the brain, both
at rest and during sensory stimulation.

Here, we aimed to map the functional changes induced by propo-
fol sedation to their molecular substrates, identifying neurotransmit-
ters which may play a fundamental role in shaping the characteristic
network changes seen during anaesthesia. We explored the molecular-
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enriched functional architecture of the brain and its changes under
anaesthesia, both at rest and during a naturalistic listening condition,
hypothesising that propofol would produce divergent effects on con-
nectivity of neuromodulatory systems at rest and during naturalistic
stimulation. Specifically, we performed secondary analyses of an openly
available fMRI dataset of healthy subjects collected at rest and whilst
listening to an emotionally engaging story. Both conditions were ac-
quired under four states of consciousness, dependant on the level of
propofol administered: awake, light sedation, deep sedation, and re-
covery. We derived molecular-enriched networks associated with the
transporters of the main modulatory neurotransmitter systems, namely
noradrenaline (NAT), dopamine (DAT), serotonin (SERT), and vesicu-
lar acetylcholine (VAChT), as well as the ionotropic GABA-A receptor.
These systems reflect bottom-up neuromodulatory as well as predomi-
nantly cortical primary pharmacological mechanisms respectively. We
then assessed which of these networks demonstrate functional changes
induced by the different levels of propofol sedation; examined if these
networks are significantly reshaped by the highly engaging external au-
ditory drive; and tested if these conditions (rest and naturalistic stimu-
lation) are differentially affected at varying levels of consciousness.

2. Methods
2.1. Participants

In this work, we employ data from previously pub-
lished studies (Kandeepan et al., 2020; Naci et al., 2018)
made publicly available on the OpenNeuro data repository
(doi:10.18112/0openneuro.ds003171.v2.0.0). This includes data
from 17 healthy subjects (Age: 24+ 5, M/F: 13/4) who were right-
handed, native English speakers, and showed no history of neurological
disorders. The original study gained full ethical approval from the
Health Sciences Research Ethics Board and Psychology Research Ethics
Board of Western University (REB #104,755) and was conducted in
accordance with the revised declaration of Helsinki (2000).

2.2. Study design

Participants underwent an fMRI scan whilst listening to an audio clip
and then at rest during four sequential levels of consciousness: awake,
light sedation, deep sedation, and recovery. The audio clip was a 5-
minute excerpt from the movie “Taken” depicting a teenage girl being
kidnapped, intended to be highly emotionally evocative and arousing.
Both story and resting-state runs were conducted with closed eyes for
all states of consciousness.

2.3. Anaesthesia

The different states of consciousness were defined as 1) Awake: Prior
to propofol administration, participants were fully awake, alert, and
communicative. 2) Light sedation: propofol infusion commenced with a
target effect-site concentration of 0.6 pg/ml and oxygen titrated to main-
tain SpO2 above 96%. Once the baseline target effect-site concentra-
tion was achieved, participants’ level of sedation was assessed. Propofol
produced increased calmness and slowed verbal responsiveness. Partici-
pants were considered lightly anaesthetised (Ramsey level 3) when they
stopped engaging in spontaneous conversation, speech became sluggish,
and only responded to loud commands. Once achieved, the effect-site
concentration was maintained. 3) Deep sedation: the target effect-site
concentration was further increased in increments of 0.3 pug/ml with
repeated assessments of responsiveness. Participants were considered
deeply sedated (Ramsey level 5) when they stopped responding to ver-
bal commands, were unable to converse, and were only rousable to light
physical stimulation. Once reached, the participant was maintained at
that level. Participants remained capable of spontaneous cardiovascular
function and ventilation. 4) Recovery: following the deep sedation runs,
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(B) Molecular templates and resulting enriched functional networks
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Fig. 1. The REACT analysis framework and molecular-enriched functional networks. (A) The stage 1 general linear model (GLM) uses the vectorised PET maps
as a spatial design matrix to extract the dominant BOLD fluctuations within each molecular system. The second GLM regresses these against the time series from
each voxel to generate receptor-enriched maps of FC. (B) The different PET templates employed within the REACT analysis (upper row) as well as the resultant
molecular-enriched networks (lower row) which are shown averaged across participants, states, and conditions (see SI fig-2) for separate figures of each combination

of condition and state.

propofol administration was discontinued and approximately 11 min
later participants reached Ramsey level 2, with clear and quick response
to verbal commands.

2.4. MRI acquisition

Participants were provided with noise cancelling headphones (Sensi-
metrics, S14; www.sens.com) to deliver sound at an individualised vol-
ume deemed comfortable. Imaging was performed on a 3T Siemens Tim
Trio system with a 32-channel head coil. Subjects underwent audio and
resting state fMRI scans using the same BOLD EPI sequence for both
conditions (33 slices, voxel size: 3mm? isotropic, inter-slice gap of 25%,
TR = 2000 ms, TE = 30 ms, matrix size = 64x64, FA = 75°). The audio
and resting-state scans had 155 and 256 vol respectively. Anatomical
scans were also obtained using a T1-weighted 3D Magnetization Pre-
pared - Rapid Gradient Echo (MPRAGE) sequence (voxel size: 1mm3
isotropic, TR = 2.3, TE = 4.25 ms, matrix size = 240 x 256 x 192,
FA =9°).

2.5. Image pre-processing

Data were pre-processed using FMRIB Software Library (FSL)
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). The processing steps included
volume re-alignment with MCFLIRT (Jenkinson et al., 2002), non-brain
tissue removal utilising the brain extraction tool (BET)(Smith, 2002),
spatial smoothing with a 6 mm FWHM Gaussian Kernel, and denois-
ing utilising the Independent Components Analysis-based Automatic Re-
moval Of Motion Artefacts (ICA-AROMA)(Pruim et al., 2015). Further-
more, subject-specific white matter (WM) and cerebrospinal fluid (CSF)
masks were generated from segmentation of structural images, eroded
to reduce partial volume effects with grey matter (GM), co-registered
to the subject-specific functional space, and used to extract and regress
out mean WM and CSF signals from each participant’s functional image
time-series. Finally, data were high-pass temporal filtered with a cut off
frequency of 0.005 Hz, normalised to the standard MNI152 template
space, and resampled at 2 mm? resolution.

2.6. Population-based molecular templates

We employed transporter and receptor density maps from the
noradrenergic, dopaminergic, serotonergic, cholinergic, and GABAergic

systems (Fig. 1). The NAT template was derived from 10 healthy
individuals utilising S, S-['1C]O-methylreboxetine PET (Hesse et al.,
2017). DAT is from a publicly available template of 123I-Ioflupane
single-photon emission computerized tomography (SPECT) images
from 30 healthy subjects (HS) without evidence of nigrostriatal
degeneration (https://www.nitrc.org/projects/spmtemplates)(Garcia-
Gomez et al., 2013). The SERT map was derived from the [11C]1DASB
PET images of 16 healthy controls (internal PET database). !8F-
fluoroethoxybenzovesamicol PET was used to produce the VAChT
template from 12 healthy participants (Aghourian et al., 2017). The
GABA-A template was derived from 6 healthy individuals utilising
[*1C]flumazenil ((Myers et al., 2012) as described in (Dukart et al.,
2018)). For each template, voxels within regions used as a reference for
quantification of the molecular data in the kinetic model were replaced
with the minimum value across all GM voxels, in order to minimise
the contribution of those regions without excluding them from the
main analysis (occipital cortex for NAT and DAT as well as cerebellum
for SERT and VAChT). Finally, all templates were normalised by
scaling image values between 0 and 1 whilst preserving the intensity
distribution. To examine collinearity between the receptor systems,
we calculated the correlation coefficients between each pair of PET
templates (SI fig-1) as well as their Variance Inflation Factors (VIF).
Of note, VIF quantifies the severity of multicollinearity in an ordinary
least squares regression analysis (VIF = ; _‘Rz ), with higher values (i.e.,
above 5) denoting strong collinearity.

2.7. Receptor-enriched analysis of functional connectivity

The functional networks enriched by the molecular systems (NAT,
DAT, SERT, VAChT, and GABA-A) were estimated for each condi-
tion (audio and rest) and state (awake, light sedation, deep seda-
tion, and recovery) using a two-step multiple linear regression anal-
ysis (O. Dipasquale et al., 2019) implemented in the REACT tool-
box (https://github.com/ottaviadipasquale/react-fmri (Dipasquale and
Frigo, 2021)). An overview of the REACT analysis is reported in Fig. 1A.
The molecular templates were used in the first regression analysis as spa-
tial regressors to estimate the dominant BOLD fluctuation of the func-
tional network related to each molecular system. At this stage, both
the fMRI data and the design matrix (i.e., the molecular templates)
were demeaned and masked using a binarized GM atlas derived from
all the molecular data, to restrict the analysis to only those GM vox-
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els for which receptor density information was available. The result-
ing subject-specific time series were then used as temporal regressors in
the second multiple regression analysis, to estimate the subject-specific
target-enriched functional maps. This second step was restricted to a
binarized GM masque derived from all participants. Again, both data
and design matrix (i.e., the time series estimated in the first step) were
demeaned, with the latter also being normalised to unit standard devi-
ation. The receptor-enriched network maps were averaged across par-
ticipants, conditions and states for visualisation purposes, but also for
each condition and state separately to provide a detailed view of these
systems. The networks derived at rest in the awake state were also fur-
ther anatomically contextualised by calculating the probability of them
including each region in the Harvard-Oxford cortical and sub-cortical at-
lases (SI fig-3). These values were determined by thresholding the mean
molecular-enriched FC maps arbitrarily at 3 to derive the rough network
configuration (these images were not used for any statistical inference)
before using the FSL “atlasquery” command to anatomically label re-
gions belonging to each network.

2.8. Statistical analysis

A repeated measures ANOVA was implemented within the Multivari-
ate and Repeated Measures (MRM) toolbox (McFarquhar et al., 2016) to
compare networks across conditions and states. For each receptor sys-
tem, we ran a 2 X 4 repeated measures ANOVA with the within-subject
factors Condition (audio/rest) and State (awake/light sedation/deep
sedation/recovery). Each model used 5000 permutations and cluster-
based thresholding (cluster-forming threshold p = 0.001). Results were
family wise error (FWE) corrected for multiple comparisons as well
as Bonferroni corrected across receptor systems (p < 0.05 / 5). Mean
receptor-enriched FC was extracted from significant clusters for each
participant in each condition and state. These summary estimates were
used to compute lower-level post-hoc pairwise tests (Sidak corrected for
multiple comparisons) within SPSS (version 28) in order to determine
which conditions and states were driving the significant ANOVA results.

3. Results

The VIF values for the receptor maps were 1.80, 2.27, 3.56, 3.72, and
1.06 for NAT, DAT, SERT, VAChT, and GABA-A respectively, reflecting
a low-moderate level of collinearity and confirming their suitability for
inclusion together within the multiple linear regression REACT anal-
ysis. This delineated receptor-enriched FC maps associated with each
neurotransmitter system for each participant, state, and condition. Av-
eraged across participants, these molecular-enriched functional systems
showed overlapping yet distinct patterns of connectivity between re-
ceptor systems (Fig. 1B) as well as some degree of modification across
conditions and states (SI fig-2). The networks from the resting awake
run were further contextualised through quantifying the probability of
each anatomical region being included within each molecular-enriched
system (SI fig-3). Positive receptor-enriched FC of varying strength was
seen within similar bilateral temporal, opercular, and insular regions
across all the modulatory systems, highlighting a potential focal re-
gion for neuromodulatory molecular-enriched networks. The SERT net-
work showed additional hubs within the frontal pole, anterior cingu-
late, and paracingulate cortex. NAT-enriched FC was particularly strong
within the pre- and post-central gyri. Both the DAT and VAChT networks
showed strong connectivity within the caudate and putamen, though the
former was stronger, within the lingual gyrus, precuneus, and brainstem
whilst the latter was stronger within the anterior cingulate, paracingu-
late, and thalamus. Finally, the GABA-A network showed primary hubs
within the occipital pole and lingual gyrus, but also the intracalcarine,
lateral occipital, cuneus, and precuneus cortex. For full details, see SI
fig-3.
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3.1. Interaction of condition and state

We found an interaction effect in the DAT-enriched network (Fig. 2),
with significant clusters surviving Bonferroni correction located in the
right middle/superior temporal gyrus (F(3,48) = 32.1, p < 0.001, cluster
size = 235, peak MNI [x = 54, y = —20, z = 0]). Simple main effects anal-
yses revealed no significant differences during the rest condition. How-
ever, during the auditory condition, FC was significantly greater during
the awake state compared to light (mean difference = 13.1, SE = 4.90,
p = 0.019, CI = 2.74 to 23.5) and deep (mean difference = 11.1,
SE = 3.20, p = 0.003, CI = 4.31 to 17.9) sedation. Similarly, FC during
the recovery state was greater than during light (mean difference = 15.7,
SE = 5.22, p = 0.048, CI = 4.68 to 26.8) and deep sedation (mean dif-
ference = 13.7, SE = 4.54, p = 0.047, CI = 4.12 to 23.4). No significant
interaction effects were found in the other molecular-enriched networks.

3.2. Main effect of state

Altered states of consciousness were associated with changes
in NAT-enriched FC within bilateral primary somatosensory cortex
(F(3,48) = 23.4, p = 0.001, cluster size = 319, peak MNI [x = 34,
y = —24, z = 46]) (Fig. 3A/C). The post-hoc test revealed that, com-
pared to the awake state, FC was significantly greater during light (mean
difference = 7.70, SE = 1.80, p = 0.004, CI = 3.86 to 11.5) and deep se-
dation (mean difference = 10.9, SE = 3.36, p = 0.029, CI = 3.81 to
18.0). Additionally, FC was significantly reduced during the recovery
state compared to light (mean difference = 8.67, SE = 1.70, p < 0.001,
CI=5.07 to 12.3) and deep sedation (mean difference = 11.9, SE = 3.33,
p = 0.015, CI = 4.87 to 19.0). Similarly, GABA-A-enriched FC showed a
main effect of sedation within the left lingual gyrus, precuneus, cuneus,
and posterior cingulate (F(3,48) = 18.5, p = 0.002, cluster size = 264,
peak MNI [x = —14, y = —64, z = 8])( Fig. 3B/D). This was also driven
by increased FC during the light (mean difference = 9.75, SE = 2.60,
p = 0.011, CI = 4.23 to 15.3) and deep sedation states (mean differ-
ence = 16.5, SE = 3.35, p < 0.001, CI = 9.40 to 23.6), compared to when
participants were awake as well as reductions in FC during the recovery
state compared to light (mean difference = 12.2, SE = 2.72, p = 0.002,
CI = 6.44 to 18.0) and deep sedation (mean difference = 19.0, SE = 4.19,
p = 0.002, CI = 10.1 to 27.9). No other networks showed a significant
main effect of State.

3.3. Main effect of condition

A significant difference between conditions of rest and auditory stim-
ulation was found for DAT-enriched FC, located in right middle/superior
temporal gyrus (F(1,16) = 62.4, p = 0.000, cluster size = 1110, peak
MNI [x = 58, y = —19, z = —4]), left middle/superior temporal gyrus
(F(1,16) = 76.7, p = 0.001, cluster size = 779, peak MNI [x = —61,
y = =13, z = —1]), as well as right mid-cingulate and precuneus
(F(1,16) = 65.1, p = 0.004, cluster size = 329, peak MNI [x = 5,
y = —40, z = 50] (Fig. 4A). The post-hoc comparison revealed reduced
DAT-enriched FC during the auditory condition compared to rest (mean
difference = 8.91, SE = 1.23, p < 0.001, CI = 6.30 to 11.5)(Fig. 4C).
GABA-enriched-FC also showed a significant main effect of condition
in the right lateral occipital cortex (F(1,16) = 49.4, p = 0.008, cluster
size = 302, peak MNI [x =, y = =76, z = —2])(Fig. 4B), with the post-hoc
test demonstrating reduced GABA-enriched FC during the auditory con-
dition compared to rest (mean difference = 5.26, SE = 0.88, p < 0.001,
CI = 3.39 to 7.14)(Fig. 4D). Finally, VAChT-enriched FC within the right
superior temporal gyrus showed a significant main effect of condition,
but this did not survive Bonferroni correction for multiple comparisons
across systems. No significant main effects of Condition were found in
the other functional networks.
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Fig. 2. (A) DAT-enriched FC within the right middle/superior temporal gyrus and mid-cingulate demonstrated an interaction between conditions and states that
remained significant after Bonferroni correction for multiple comparisons across systems. The average molecular enriched networks are shown on the top left and z
MNI co-ordinates are reported below each axial slice. (B) Mean DAT enriched FC extracted from the significant cluster displayed for each conditon and state. Dotted
lines represent quartiles. Image slices are shown in the neurological orientation.

4. Discussion

In this work, we explored how different levels of propofol seda-
tion shape the network architecture of the resting and engaged brain,
utilising novel multi-modal methods which establish clearer mecha-
nistic links between neurotransmission and connectivity. We enriched
BOLD fMRI analysis with the distribution density of modulatory (NAT,
DAT, SERT, and VAChT) as well as inhibitory (GABA-A) neurotrans-
mitters and assessed the connectivity of these networks under propofol-
mediated manipulations of consciousness. Given the potential benefit of
using naturalistic stimuli to engage sensory and higher-level cognitive
processes (Finn, 2021), we also tested if these molecular-enriched func-
tional networks undergo substantial reconfiguration as compared to the
resting state. We found a significant modification of the DAT-enriched
network under external auditory drive, mainly within bilateral temporal
regions and the mid-cingulate/precuneus, with the right temporal gyrus
demonstrating differential effects as a function of consciousness. More-
over, propofol sedation was associated with increased GABA-A and NAT
enriched FC within occipital and somatosensory regions respectively.
Finally, GABA-A enriched FC within lateral occipital cortex was also
reduced in the naturalistic condition. We discuss these main findings
below.

4.1. Propofol sedation induces a differential reconfiguration of the
DAT-enriched functional network during naturalistic stimulation as
compared to rest

Previous work largely demonstrates that, during the awake state,
auditory stimulation produces significant activations in bilateral tem-
poral and frontal regions, of which the former but not the latter
show some level of preservation under propofol sedation (Adapa et al.,
2014; Heinke et al., 2004; Liu et al., 2012; Plourde et al., 2006). This
would suggest that some aspects of basic sensory processing persist, but
higher-level mechanisms functionally and causally downstream still pre-
clude the integration of lower-level information into a coherent percept
(Dehaene et al., 2014, 2006; Dehaene and Changeux, 2011). Somewhat
contrary to this, we find that DAT-enriched FC within the right mid-
dle/superior temporal gyrus is differentially engaged by auditory pro-
cessing at different levels of anaesthesia, providing indirect evidence for

a role of dopamine in processing of auditory stimuli which is at least
partially extinguished under anaesthesia. This somewhat aligns with
the previously described role of dopamine in modulating DMN con-
nectivity under propofol anaesthesia (Spindler et al., 2021). Although
our findings are condition specific, both sets of results point towards
propofol shaping network dynamics through engagement of dopamin-
ergic circuits. Dopamine has broadly been linked to network dynam-
ics, including linear and non-linear effects on different resting-state net-
works (Cole et al., 2013), modulation of network stability and integrity
(Shafiei et al., 2019), the connectivity of striatal regions (Kelly et al.,
2009), and distinct contributions of dopaminergic nuclei to shaping dif-
ferent networks (Conio et al., 2019; Murty et al., 2014). Here, we extend
these accounts to suggest that the neuromodulatory role of dopamine en-
gaged under naturalistic conditions might contribute to consciousness
related perceptual and/or cognitive processes.

Dopaminergic neurotransmission over varying time scales has long
been implicated in the inter-related mechanisms of action, learning,
and reward processing (Berke, 2018; Diederen and Fletcher, 2021;
Gershman and Uchida, 2019; Lerner et al., 2021; Schultz, 2007). Per-
ception and action are inextricably intertwined, and a multitude of par-
allel systems linking perceptual processing anchored within early sen-
sory cortices through to behavioural responses, for which the basal gan-
glia play a critical role (Ding and Gold, 2013; Guo et al., 2018). In-
deed, a dopaminergic recipient portion of the posterior dorsal striatum
is explicitly involved in processing of auditory information and shap-
ing the selection of appropriate actions (Chen et al., 2022; L. 2019;
Hunnicutt et al., 2014; Ponvert and Jaramillo, 2019; Valjent and
Gangarossa, 2021; Xiong et al, 2015a, 2015b; Znamenskiy and
Zador, 2013). Dopamine has also been suggested to play a key role in
gating prefrontal output, akin to striatal gaiting of actions, but applied
to facets of cognition such as working memory and executive function
(Frank et al., 2001; Hazy et al., 2007). This top-down flexible cogni-
tive control can bias information processing towards task-relevant rep-
resentations (Cools, 2019; van Schouwenburg et al., 2015, 2013, 2010).
Similarly, dopamine is indirectly implicated in aspects of attention and
executive function through its role in the aetiology of attention deficit
hyperactive disorder, as evidenced by genetics (Kanarik et al., 2022;
Li et al., 2006; Wu et al., 2012) and the largely dopaminergic pharma-
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Fig. 3. Clusters showing main effects of state (awake/light sedation/deep sedation/recovery) for (A) NAT-enriched FC and (B) GABA-A enriched FC that survived
Bonferroni correction for multiple comparisons across systems. The average molecular enriched networks are shown on the left and z MNI co-ordinates are reported
below each axial slice. The receptor-enriched FC extracted from the significant (C) NAT and (D) GABA-A clusters, averaged across conditions, showed significant
differences in the post-hoc contrasts [awake < light sedation], [awake < deep sedation], [light sedation > recovery], and [deep sedation > recovery]. (*** p < 0.001;

** p <0.01, * p < 0.05). Image slices are shown in the neurological orientation.

cology of effective treatments (Faraone, 2018). Given this multiplicity
of dopaminergic mechanisms, we conjecture that the differentially en-
gaged DAT-enriched connectivity identified here may reflect aspects of
cognition including attention or action selection, neither of which would
be expected to persist under anaesthesia. The right lateralisation of this
interaction effect is likely a statistical artefact resulting from the appli-
cation of statistical thresholds, i.e. only one of the hemispheres survive
correction even though the signal is present bilaterally. A better pow-
ered analysis would likely reveal more widespread results encompassing
the additional clusters engaged during auditory stimulation. Indeed, the
FC of the ventral tegmental area is largely symmetrical (Cauzzo et al.,
2022), suggesting that if not solely due to sensitivity, this laterality
could be driven by the temporal cortex itself, possibly due to additional
mechanisms such as attentional networks which show a right hemi-
spheric dominance (Corbetta and Shulman, 2002; Coull, 1998). Care-
ful subsequent experimental and/or pharmacological manipulation will

be required to further dissect the potential functional contributions of
dopamine, and concomitant network reconfigurations, to both cognition
and consciousness.

4.2. NAT and GABA-A enriched FC increase under propofol sedation

Consciousness appears to be dependant on the correlation and
anti-correlation of large-scale brain networks (Dehaene et al., 2014;
Dehaene and Changeux, 2011; di Perri et al., 2016). Increasing evidence
supports the notion that these networks not only depend on their stable
structural connectivity, but are also shaped by a host of neuromodula-
tory systems that exert widespread influence over diverse but overlap-
ping cortical and subcortical regions (van den Brink et al., 2019). Our
findings expand these accounts by showing that FC increases with depth
of sedation for NAT and GABA-A enriched networks within somatosen-
sory and occipital regions, respectively. Whilst located within regions of
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orientation.

sensory cortex, these clusters represent coupling to a diverse set of addi-
tional brain regions highly expressing the relevant receptor/transporter,
alluding to a more widespread network change which likely involves
additional higher-order regions. Broadly, this aligns with the known ac-
tions of propofol directly onto GABAergic cortical circuits as well as via
ascending modulatory arousal systems.

Propofol acts primarily through potentiating GABAergic trans-
mission throughout the central nervous system (Bai et al., 1999;
Hapfelmeier et al., 2001; Hemmings et al., 2019, 2005). Despite a sig-
nificant number of neuroimaging studies, a comprehensive account of
the relationships between this GABAergic potentiation, neural activ-
ity/connectivity, and consciousness remains elusive (Bonhomme et al.,
2019). Even in the first PET studies on anaesthesia in humans, Alkire
and colleagues speculated that regional reductions in glucose metabolic
rates (which was greater within cortical than subcortical regions) may
be driven by the distribution of GABA-A receptors (Alkire et al., 1995).

Accordingly, we found that propofol sedation increased FC in the func-
tional network related to GABA-A within occipital regions, which likely
reflects direct actions of propofol on cortical GABA-A receptors modu-
lating the BOLD activity of those areas. This is in accordance with recent
whole brain modelling work which demonstrated a key role of GABA-A-
mediated inhibition in recapitulating the experimentally observed net-
work dynamics under propofol anaesthesia (Luppi et al., 2022). Sim-
ilarly, another study exploiting genomic data from the Allen Human
Brain Atlas (AHBA) found that networks with significantly reduced
connectivity under propofol also show a high density of parvalbumin-
expressing GABAergic neurones (Craig et al., 2021). Their complemen-
tary approach provides cellular meso-scale insight, further linking global
connectivity measures to the GABAergic system by particularly impli-
cating this subpopulation of inhibitory neurones. Future work examin-
ing both receptor and cellular systems in combination may allow for
more comprehensive mapping of the functional contributions of these
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lower-level organisational principles onto the systems-levels dynamics
supporting consciousness.

Interestingly, Craig et al. also found that many areas, including the
somatosensory cortex, exhibited increases in connectivity as a function
of depth of anaesthesia (Craig et al., 2021). Unlike the regions of re-
duced connectivity mentioned above, these increases were not signif-
icantly associated with GABAergic expression, alluding to an alterna-
tive mechanism. Our results demonstrate that noradrenergic FC is in-
creased in the bilateral somatosensory cortices during propofol seda-
tion, suggesting that altered noradrenergic tone may contribute to these
additional changes in connectivity. Propofol has been reported to su-
press activity within brainstem nuclei relating to arousal (Nguyen and
Postnova, 2021), including the locus coeruleus (LC)(Chen et al., 1999;
Du et al., 2018). The LC provides widespread noradrenergic projec-
tions to virtually all regions of the brain (Sara, 2009). As such, our
findings may reflect suppression of LC activity by propofol, result-
ing in the selective modulation of BOLD signal in noradrenaline re-
cipient regions. Furthermore, neuromodulators including noradrenaline
also tune thalamocortical network synchronisation (Dahl et al., 2022),
which has been strongly implicated in mechanisms of anaesthesia
(Malekmohammadi et al., 2019). This is also concordant with various
supporting evidence for a causal contribution of noradrenaline to main-
taining consciousness. Dexmedetomidine, which inhibits noradrenergic
neurones within the LC through presynaptic «2 adrenoceptor agonism
(Nelson et al., 2003), produces a state similar to non-REM sleep and
reduces the dose of propofol required to induce loss of consciousness
(Peden et al., 2001; Zhang et al., 2021). Similarly, chemogenetic activa-
tion of NA populations within the LC can retard anaesthetic induction as
well as produce cortical arousal and expedited behavioural emergence
from unconsciousness following isoflurane anaesthesia in a manner pre-
ventable by al or [ receptor antagonism (Vazey and Aston-Jones, 2014).
Furthermore, mutations perturbing NA biosynthesis can produce hyper-
sensitivity to anaesthetic induction and particularly diminish emergence
from anaesthesia (Hu et al., 2012). However, neither pharmacological
blockade of noradrenergic reuptake (Kenny et al., 2015), nor microdial-
ysis of noradrenaline within the prefrontal cortex (Pal et al., 2018) re-
stores consciousness during continuous sevoflurane anaesthesia. More-
over, manipulations of other modulatory neurotransmitter systems in-
cluding acetylcholine, dopamine, histamine, and orexin can also mod-
ulate the neurophysiological induction, maintenance, and emergence
from anaesthesia (Hemmings et al., 2019). Thus, whilst noradrenergic
transmission from the LC is clearly involved, its alteration under anaes-
thesia seems to be neither necessary nor sufficient for the resultant be-
havioural manifestation. This further highlights the complex contribu-
tion of numerous mechanisms which interact at multiple levels to enact
general anaesthetic agents’ effects on consciousness.

It remains unclear why we did not identify differences in the other
modulatory receptor-enriched networks under propofol sedation re-
gardless of condition. In particular, projections from the dopaminergic
ventral tegmental area (VTA) to the posterior cingulate cortex (PCC)
and precuneus have recently been described to modulate DMN con-
nectivity under propofol anaesthesia (Spindler et al., 2021). The au-
thors also attempted to demonstrate a more direct causal role for
dopamine in this mechanism by showing methylphenidate boosts VTA —
PCC/precuneus connectivity in patients with disorders of consciousness.
However, the temporal dynamics of the VTA and LC are positively corre-
lated, with the collective activity of brainstem nuclei generally showing
widespread anticorrelation with the cortex (Zhang et al., 2016). More-
over, methylphenidate also increases levels of noradrenaline, and the LC
has recently been robustly demonstrated to have the capacity to modu-
late frontal DMN regions (Oyarzabal et al., 2022). As such, disentangling
the effects of these catecholaminergic systems on brain-wide connectiv-
ity is challenging and the aforementioned findings may be driven at least
in part by the noradrenergic system. Indeed, both the PCC and precuneus
showed similar levels of dopaminergic and noradrenergic transporter-
enriched FC (SI fig-3). REACT allowed us to examine both DAT and
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NAT related FC simultaneously, and the distribution of their receptor
sub-systems has previously been employed to attempt to delineate their
associations to distinct patterns of connectivity induced by atomoxe-
tine (van den Brink et al., 2018). These differences between molecular-
enriched networks and seed-based connectivity approaches may sim-
ply be methodological, with our dopaminergic task-positive findings
being the inverse of its effects on the task negative DMN connectivity
(Spindler et al., 2021). Future work employing both methods as well
as more selective manipulation of catecholaminergic transmission may
allow for more precise characterisation of their relative contributions to
network changes under anaesthesia.

4.3. DAT and GABA-A enriched connectivity associated with naturalistic
auditory stimulation, regardless of level of anaesthesia

Analysis of task-based fMRI conventionally entails convolving an
event or block-related design with a haemodynamic response function
and then identifying voxels whose BOLD activity shows temporal con-
cordance with this predicted time series. Conversely, here we employed
a temporally coarse-grained approach by calculating a measure of static
receptor-enriched FC during naturalistic auditory stimulation and com-
paring this to the resting state condition. This delineated a broader
set of regions of the DAT-enriched network, namely the bilateral mid-
dle/superior temporal gyri as well as the mid-cingulate cortex, that
demonstrated increased FC during the auditory condition as compared
to rest. In other words, the BOLD time series of these clusters was more
strongly coupled to the dominant fluctuations of the functional net-
work related to DAT during the task condition than at rest. Given that
DAT is principally expressed within the basal ganglia, and that the re-
sultant average DAT-enriched network has key nodes within bilateral
striatal and temporal regions, our findings likely represent a neuromod-
ulatory role of dopamine in shaping cortico-striatal networks. Indeed,
a recent tractography study identified strong structural connectivity be-
tween the superior temporal cortex and putamen (Sitek et al., 2022). Re-
gions of mid-, posterior-cingulate, and precuneus cortex are also inner-
vated by dopaminergic afferents (Vogt, 2016) and have previously been
described to preferentially activate during narrative shifts within a nat-
uralistic listening paradigm (Whitney et al., 2009). As discussed above,
precisely which facets of perception and/or cognition this connectivity
may relate to represents remains speculative, although, we conjecture
this may reflect mechanisms relating to attention or action selection.
Similarly, the reduction of GABA-A enriched FC within right lateral oc-
cipital cortex during auditory stimulation could reflect a multitude of
different perceptual and cognitive mechanisms. Thus, whilst this work
provides a proof-of-concept that molecular-enriched networks are also
amenable to reconfiguration under non-pharmacological or pathologi-
cal states, more specific experimental manipulation is required to tease
apart their functional significance. In particular, the combined use of
this temporally coarse grained approach alongside a modified version
of generalised psycho-physiological interaction analysis (Wong et al.,
2022) utilising REACT molecular time series may prove a particularly
fruitful approach to probe task-related molecular-enriched connectivity
associated with specific facets of cognition and perception engaged un-
der diverse naturalistic and task conditions. Moreover, investigation of
the potential differential contributions of D1- and D2-like receptors, as
well as the broader interactions of different modulatory systems within
the focal temporal regions showing positive receptor-enriched FC across
modulatory systems, will be important to further link these receptor-
enriched networks to their precise roles in mediating or modulating the
subjective experience associated with naturalistic auditory stimulation.

4.4. Limitations
This work is not without limitations. Firstly, the small sample

size may limit our power to detect alterations within these receptor-
enriched networks and interactions between conditions and states, es-
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pecially alongside the stringent Bonferroni correction applied. Similarly,
stronger doses of propofol may produce more substantial effects on
molecular-enriched networks than those seen here. Secondly, the PET
templates employed within the REACT analyses were average maps de-
rived in separate cohorts of healthy individuals. Thus, accounting for
inter-individual differences in receptor density in our sample is not pos-
sible. However, the use of independent average templates brings the ad-
vantage of permitting investigation of multiple targets without requiring
the acquisition of multi-tracer data in the same subject, which is typi-
cally not feasible. Finally, the spatial distributions of molecular targets
we studied here do show some level of correlation between each other.
However, including all maps within the same model is an essential step
to ensure that the variance of the BOLD signal is partitioned between all
systems, instead of running separate models for each different system,
which would lead to an omitted-variable bias. This bias occurs when a
statistical model (here, multiple linear regression) omits an independent
variable (a molecular system) that is both a determinant of the depen-
dant variable (the BOLD signal) and correlated with one or more of the
included independent variables (Lawn et al., 2022b). This yields an un-
predictable attribution of the effects of the missing variables to those
variables that are included. Furthermore, the VIF values of the molecu-
lar systems included in this study were all within a reasonable range (all
< 5), providing additional confidence in the validity and interpretability
of our models.

5. Conclusion

In this work, we provide new evidence that propofol engages with
both cortical and sub-cortical targets to shape the network architecture
of the brain during anaesthesia. Furthermore, we delineate a dopamin-
ergic network which shows cognition-related reconfiguration and differ-
ential modulation under anaesthesia. This novel application of REACT
highlights the significant potential of this methodology to further un-
ravel the contribution of molecular systems to various facets of percep-
tion and cognition. Future work examining interactions with other trans-
mitter systems, the contribution of receptor subtypes, and dynamic fluc-
tuations in receptor-enriched FC may offer additional critical insights
into neuromodulatory mechanisms engaged under naturalistic condi-
tions. Furthermore, characterising receptor-enriched network changes
across diverse anaesthetic agents may shed further light on the func-
tional contributions of these molecular systems as well as aid identifi-
cation of common paths to unconsciousness. In the longer term, an un-
derstanding of how molecular mechanisms shape the complex systems
level dynamics from which consciousness emerges may offer novel op-
portunities to treat those suffering from disorders of consciousness.
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